پیشبینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی
نویسندگان
چکیده مقاله:
خشکسالی بهعنوان یکی از مهمترین بلایای طبیعی است که ممکن است در هر رژیم آب و هوایی اتفاق بیفتد. از آنجا که وقوع خشکسالی اجتناب ناپذیر است، بنابراین شناخت آن بهمنظور مدیریت بهینه منابع آب، از اهمیت بسزایی برخوردار است. از مؤثرترین عوامل در تدوین طرحهای مقابله با خشکسالی و مدیریت آن، طراحی سیستمهای پیشبینی خشکسالی است که بتوان اثرات مخرب ناشی از آن را به حداقل رساند. به این منظور در این تحقیق برای پیشبینی خشکسالیهای آتی، از تلفیق الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی-موجکی در تحلیل شاخص بارندگی استاندارد شده، استفاده گردید و در نهایت نشان داده شد که بهکارگیری روش تلفیقی مذکور در مقایسه با تلفیق الگوریتم ژنتیک و شبکه عصبی، نتایج مطلوبی را ارائه میدهد.
منابع مشابه
پیش بینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی
خشکسالی به عنوان یکی از مهم ترین بلایای طبیعی است که ممکن است در هر رژیم آب و هوایی اتفاق بیفتد. از آنجا که وقوع خشکسالی اجتناب ناپذیر است، بنابراین شناخت آن به منظور مدیریت بهینه منابع آب، از اهمیت بسزایی برخوردار است. از مؤثرترین عوامل در تدوین طرحهای مقابله با خشکسالی و مدیریت آن، طراحی سیستم های پیش بینی خشکسالی است که بتوان اثرات مخرب ناشی از آن را به حداقل رساند. به این منظور در این تحقیق...
متن کاملشناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF
هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران میباشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و دادههای واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا دادههای مربوط به 316 شرکت از نخستین رو...
متن کاملاستفاده از مدل های ترکیبی ماشین بردار پشتیبان - موجکی و شبکه عصبی -موجکی در پیشبینی تراز آب زیرزمینی دشت اردبیل
چکیده آبهای زیرزمینی همواره به عنوان یکی از منابع مهم و عمده ی تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه خشک مطرح بودهاند. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه ی آنها، لازم است پیشبینی دقیقی از نوسانات سطح آب زیرزمینی صورت گیرد. در این تحقیق اطلاعات 15 پیزومتر موجود در دشت اردبیل مورد استفاده قرارگرفت. از تبدیل موجک و روش خوشهبندی به ترتیب برای پیشپردازش زمانی و مک...
متن کاملپیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی
هدف از این مقاله ارزیابی الگوی ترکیبی شبکههای عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران میباشد. برای این منظور، از دادههای سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدلهای پیشبینی و از دادههای سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدلهای پیشبینی استفاده شد. در پایان به منظور مقایسه نتایج پیشبینی مدل ترکیبی...
متن کاملمدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 23 شماره 3
صفحات 48- 59
تاریخ انتشار 2012-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023